Our approach to mining
Read more
A world-class portfolio
Read more
COVID-19 update
Read more
Take a tour of a modern mine
Read more
Q1 2020 Production Report
Read about our performance in Q1 2020
The difference makers
Read more
How to become a supplier

05 January 2018

As part of our FutureSmart MiningTM approach to innovation and sustainability, we have developed four aspirational concepts that we are working to achieve. In this article, we take a look at the Modern Mine…

Picture a hard rock mine where we safely and efficiently extract the targeted ore without the need for explosive blasting, our people safely out of harm’s way. As precious resources become ever more difficult to access at depth, we are exploring technologies such as automation and even robotics to transform hard rock mining.

We are using automated and continuous rock cutting vehicles to safely extract the targeted ore deep underground without the need for explosive blasting, thereby creating far greater rock stability and far less variance in the quality of the ore we extract. Such safety and productivity innovations make it possible for us to mine lower grade ores and complex mineralogy, creating a safer environment, lower operating costs while enhancing the value of the mineral resource in the ground.

Our riskiest operations from a safety perspective today are our underground platinum mines. The technical demands of underground hard rock mining operations are higher than for open cut, which is why we are collaborating with key mining machinery and technology manufacturers (OEMs) on three automated and continuous mining vehicles designed to create far greater rock stability and less variance in the quality of the ore we extract.

We have created the Rapid Mine Development System (RMDS) together with Atlas Copco, designed to quickly, cost efficiently and safely excavate low-profile tunnels in hard rock. The RMDS excavates a rectangular-shaped tunnel, important for roof stability purposes in platinum mines, as well as providing the flat floor needed by mine vehicles. As well as removing people from areas of most danger underground, the RMDS causes less damage to the overhead walls, thereby reducing the risk of collapse and enables greater ore excavation time as there is no time lost for explosive blasting. RMDS is in Proof of Concept

Testing at our Twickenham platinum mine in South Africa

One of the crucial components of moving from batch to continuous hard rock mining is the mechanisation of the transport of the hard rock cuttings from the back end of the RMDS to the mine’s fixed conveyor system. We are also collaborating with SANDVIK on a continuous haulage system (CHS). This is a remote controlled device, that connects the RMDS to the mine’s fixed conveyors. CHS is now being tested underground at Twickenham mine.

Also in development with SANDVIK is another remotely operated rig, the MN 220 Reef Miner. This incorporates cutting and roof bolting and is designed for mining narrow mineral reefs in hard rock. It is up to three times faster than conventional drill & blast methods and, of course, also removes our people from harm’s way. After successful proof of concept trials at the Bathopele platinum mine in South Africa in 2013, it is now being optimised specifically for platinum mining.

Also under development with Atlas Copco another reef mining innovation is the Slot Borer. Based on proven raise-boring technology but designed to drill narrow vein hard rock ore body of just 1m-1.5m. It is in proof-of concept testing in South Africa.

Taken together, the safety and productivity gains from a continuous mining process in hard rock are significant: yielding improvements in tunnel advance rates and reduction in operating costs, while removing people from harm.

Notably, it took the coal industry two decades to move from conventional mining to mechanisation and partial automation, so the learnings from these underground cutting and rapid mine development projects, applicable to underground diamond as well as platinum mining, are exciting for Anglo American; they are also vital to the future of underground mining in an era of deeper mines, increasing costs and falling productivity.

Further away, we are testing the latest robotics technology to send low-profile autonomous vehicles, instead of our people, into deep tunnels. The advantages of a fleet (or “swarm”) of low cost, modular mining robots are two-fold: because they go directly into the valuable orebody, without touching the overburden, they significantly reduce the safety risks of underground mining; they also deliver precision mining on a daily basis. Compared to conventional mining, a “swarm” robotics system breaks the paradigm of scale. Innovation in mining has traditionally meant scaling up – bigger trucks, bigger shovels - to increase capacity. With robotics, the smaller the better: lightweight and modular, robots can perform multiple tasks, with precision, in any terrain.

We are also rounding off work on cryogenic SQUID – an exploration technology that can detect and map a range of ore deposits. Specifically, we are modifying its carriage so it can be adapted for multiple aircraft attachments and drone flights. SQUID – a super conducting quantum interference device – is particularly useful for finding buried metallic deposits that are masked by other conducting metals.

Together with advances in data science, automated and remote systems will lead inevitably to a simpler, faster – and standardised – operation; an outcome that will move mining closer to reducing and better managing the huge variability that characterises the industry today, while generating safety and productivity gains.

Such safety and productivity innovations make it possible for us to create a safer environment, while mining lower grade ores and complex mineralogy, at lower cost.

Picture This: The Waterless Mine

Picture this: The Concentrated Mine

Picture This: The Intelligent Mine

Other stories you might like